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1.  SUMMARY 
 
 In an active network, new protocols and services can be injected into the network 
using smart packets to carry customized software components.  This technology increases 
the degree and sophistication of the network architecture and enables fast deployment of 
new protocols and services.  However, allowing installation of arbitrary software 
components on routers may cause undesirable side effects and impact the protection 
guarantees of the software on the routers.  Administrators of active network routers may 
want to restrict the behavior of active capsules and preserve certain behavior guarantees at 
all times.  These guarantees may be specified as safety properties of component 
mechanisms, noninterference properties of information flows, or timing guarantees in 
availability policies.  Traditional security mechanisms and network policy management 
tools have limited support for changing and enforcing different types of policy strategies, 
let alone policies, at run-time.  The ability to specify, implement and enforce these policies 
in a dynamic environment becomes crucial. 

 In Seraphim, we study the interoperability, extensibility, and configuration issues of 
security policies for active networks.  To address these issues, we introduce the notion of 
dynamic policies that can be enforced by executing them on an active network node.  These 
policies are designed by formally modeling the behavior and interactions between different 
components on active routers.  Behavioral guarantees, expressed as temporal safety 
properties, form an integral part of the specification of dynamic policies and can be 
validated within the model framework.  Policies are implemented by wrapping the 
mechanisms to change operational parameters with suitable guards so as to preserve these 
behavior guarantees.  This combination of guards and commands are encapsulated in active 
capsules and the policy they specify is enforced by instantiating and executing these 
capsules in a suitable sandbox-like environment on the active router.  Using our policy 
framework, we can change policy strategies (e.g., between MAC and RBAC) at run-time, 
in response to intrusions and other security violations, without sacrificing security 
guarantees.  

 We also provide a suite of customizable security mechanisms to protect the 
integrity, authenticity, and confidentiality of capsules exchanged between active routers.  
These mechanisms to secure the node of an active network are implemented as services 
based on standardized APIs.  The services are carefully designed and analyzed to preserve 
noninterference properties and prevent information leaks.  The dynamism afforded by the 
architecture also allows us to implement different Quality of Protection (QoP) levels to 
provide customizable security for active flows.  This enables us to implement minimal 
security policies and deploy stronger mechanisms on a need to protect basis, and amortize 
performance penalties.  We believe that this support for dynamism in security is our major 
contribution in the context of security for active networks.  
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2.  OVERVIEW OF CONTRIBUTIONS 
 

We believe that no single security architecture will be able to address the security 
issues for active networks in general.  Customizable security policies and extensible 
security mechanisms will play an important part in addressing the security concerns with 
the practical deployment of active network infrastructure on routers.  We argue that 
developing satisfactory security solutions in a dynamic environment requires support for 
dynamic security.  We provide a framework to develop reactive security solutions in this 
context, on a need-to-protect basis with minimal overhead in terms of software and 
performance.  In this section, we summarize our major contributions, which include: 

 
• A dynamic security architecture for active networks that provides support for 

dynamic policies that integrates seamlessly with proposed active network 
architecture [Liu00-1, Liu00-2], along with a distributed secure multicast 
application to demonstrate these policies [Var99, Var00, Liu00-3].  

• A componentized policy framework that implements different access control 
strategies and allows administrators to change between policy strategies at run 
time [Nal00]. 

• A suite of customizable mechanisms to secure the node of an active network 
along with a flow analysis to guarantee noninterference [Liu005, Liu00-6]. 

• Formal specification and validation of dynamic policies [Nal02]. 
• Investigation of denial of service prevention and implementation of certified 

bandwidth mechanisms. 
 

We describe each of these contributions in greater detail the following subsections. 
  

1.1  SECURITY ARCHITECTURE FOR DYNAMIC POLICY 
 
 The Seraphim project developed dynamic and fully extensible security architecture 
for active networks [Liu00-1, Liu00-2].  The architecture is based on the principles 
underlying active networks rather than on existing static systems.  Seraphim project adopts 
ideas and technologies from previous Cherubim mobile agent based security architecture 
research, including dynamic security policies that support interoperability among different 
security domains, and active capabilities that provide application specific security 
functions.  In addition, Seraphim’s security architecture for active networks imposes only a 
minimal set of security functions on the base active network architecture to support secure 
deployment of new security services.  More sophisticated and application specific security 
functions may be recursively installed using a secure reconfigurable [Liu00-4] bootstrap 
process. Seraphim’s architecture is not constrained to one specific security scheme for 
securing smart packets and active nodes.  This reflective design allows the maximum 
flexibility for building a secure active network environment.  Seraphim’s security 
architecture fits transparently into the proposed Active Network and Active Network 
Security Architecture. We have also integrated it with the ABone test-bed. 



 3

1.2   DYNAMIC ACCESS CONTROL POLICIES 
 
 Seraphim’s Dynamic Policy Management Framework, written in Java, implements 
different access control strategies.  In addition to DAC (Discretionary Access Control), 
MAC (Mandatory Access Control) and RBAC (Role Based Access Control) we have also 
incorporated the I-RBAC (Interoperable RBAC) [Kap00] and R2BAC models developed by 
our group.  The I-RBAC model allows us to interoperate between different RBAC domains, 
providing us a dynamic mechanism to translate our dynamic access control policies across 
different domains.  The R2BAC model allows us to change between two different RBAC 
instances in the same domain.  This model is useful to deploy a restrictive access control 
policy under an attack and change it back to the default when the threat has receded. 

 
1.3   SECURE NODE ARCHITECTURE AND SECURITY AS SERVICES 
 
 The secure node architecture includes an active node operating system security API, 
an active security guardian, and quality of protection (QoP) provisions [Liu00-5, Liu01, 
Liu02].  The architecture supports highly customized and situational policies created by 
users and applications dynamically.  It permits active nodes to satisfy application-specific 
dynamic security and protection requirements.  The secure node architecture can provide a 
fundamental base for securing the active network infrastructure.  It provides a framework 
that adapts and implements the Pluggable Authentication Module API, Generic Access and 
Authorization API and Generic Security Services API for authentication, authorization, and 
various security services.  The implementation uses DES, IDEA, and Rijndael encryption 
algorithms, whose keys are exchanged through RSA/X.509v3 algorithm, for dynamic 
customized security services.  The security configuration supports various encryption 
algorithms and RSA key lengths.  Applications can dynamically select the suitable security 
configuration and services at each routing hop, based on their security and performance 
requirements.   

 

1.4   SECURE FLOW ANALYSIS 
 
 In addition to the secure node architecture, we also provide the analysis of secure 
information flow using a type system [Liu01].  Information flow control is concerned with 
the right of dissemination of information.  Secure information flow properly restricts the 
propagation of sensitive cryptographic data beyond the security API to untrusted 
environments.  The analysis demonstrates that the type system can ensure secure flow 
enforcement efficiently and therefore provide additional security assurance for active 
networks.  The type system guarantees that a well-typed program satisfies the 
noninterference security property.  This means that the program does not leak sensitive 
data.   
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1.5   FORMAL SPECIFICATION AND VALIDATION OF DYNAMIC POLICIES 
 
 We introduce formal modeling and specification in our policy development life 
cycle.  In most existing systems, policies are implemented and enforced by changing the 
operational parameters of shared system objects.  These policies do not account the 
behavior of the entire system, and enforcing these policies can have unexpected interactive 
or concurrent behavior.  We develop a policy specification, implementation, and 
enforcement methodology based on formal models of interactive behavior and satisfiability 
of system properties.  We show that by carefully designing the code to change the 
operational parameters our policy implementation entities, dynamically installing and 
executing our policies does not affect the behavioral guarantees specified by the properties. 
Our dynamic policy is a program consisting of a set of guards and actions, created by our 
policy administrator.  It encodes not only the logic to modify the system implementation to 
change operational parameters, but also includes all the necessary guards to enforce good 
behavior and prevent its misuse.  For example, in the access control policy example, the 
guard can include proofs of authorization, and the commands are programs to change 
parameters of an access control rule.  In our Seraphim active network prototype, these 
programs map directly to active capsules, and can be viewed as in-line policies.  We also 
describe other types of dynamic policies for information flow and availability, based on 
safety, liveness, fairness, and other properties.  We believe that dynamic policies are 
important building blocks of reactive security solutions for active networks. 
 
1.6   DENIAL OF SERVICE PROTECTION 
 
 In addition to our work in dynamic policies, we have also developed a behavioral 
model of network denial of service; especially Distributed Denial of Service attacks 
(DDOS). Based on the behavior analysis, we argue that the trace of a DDOS victim’s 
behavior cannot be made DDOS resistant by implementing a suitable mechanism on the 
victim alone.  Bandwidth agreements, similar in flavor to user agreements, are necessary to 
prevent denial of service.  We have implemented a lightweight mechanism that was 
demonstrated at the December 2000 Demo meeting, to attach bandwidth certificates to 
legitimate traffic.  We call these certificates CABs or Credentials that Authorize 
Bandwidth.  A CAB is a small, fixed length identifier that cannot be forged easily.  It 
certifies that the packet it is attached to is legitimate.  It can be used to mark legitimate 
UDP or control packets for DDOS resistance.  One of the ways to ensure that valid CABs 
can only be created by trusted entities is to use cryptography and tie in a shared secret to the 
CAB value.  Certified bandwidth can be used to implement cooperative bandwidth 
agreements required to prevent denial of service.  
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3.   LIST OF ACCOMPLISHMENTS 
 
 
June 1998 – June 1999: 
 
1.  Modified ANTS active network toolkit and built the SAINTS (Secure Active 
Interoperable Network Toolkit System) to implement the Active network architecture with 
explicit NodeOS and Execution Environment (EE) objects.  This modified toolkit was the 
test-bed for most of our experiments. 

2.  Designed and implemented a lean security guardian to provide access control from the 
EE to the shared NodeOS resources.  The security guardian is a colocated extension to the 
NodeOS.  Every node has a security guardian, through which all accesses to node resources 
occur. 

3.  Completed implementation of the NodeOS proxy to support portability.  The EEs direct 
their requests for NodeOS resources to the NodeOS proxy that sits atop the NodeOS.  The 
proxy acts as a wrapper to the NodeOS API and redirects access control requests to the 
security guardian. 

4.  Completed implementation of Role Based Access Control (RBAC) within the Seraphim 
policy framework and integrated support for DAC and MAC from our previous project into 
the Seraphim toolkit.  

5.  Demonstrated support for secure, flexible, and dynamic multicast, as an extension of the 
original ANTS multicast scheme.  Deposited a Master’s thesis titled “Dynamic Distributed 
Secure Multicast in Active Networks”.  
 
July 1999 - June 2000: 
 
1.  Designed a NodeOS security API to support authentication, authorization and integrity. 
The API includes Pluggable Authentication Module (PAM) API, Generic Security Services 
(GSS) API, and Generic Authorization and Access Control (GAA) API.  This security API 
is complement to the current NodeOS Interface Specification that focuses on fast network 
packet-forwarding fine-grained quality of service. 

2.  Developed an Active Caching framework for our active capabilities.  By caching the 
reusable active capabilities, the system reduces the overhead of retrieving the active 
capability every time a security decision has to be made.  

3.  Modified and enhanced the Security Architecture for Active Networks document and 
circulated it throughout the active network community.  The modifications and 
enhancements show the lessons learned from our Seraphim project and reflect the view of 
flexible, dynamic and interoperable active network security based on active capabilities.  
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4.  Developed the IRBAC model of secure interoperability between security domains 
operating under the Role Based Access Control (RBAC) policy for dynamic role 
translations. 

5.  Produced a PhD thesis on trust management in a distributed environment.  The solution 
proposed in this model avoids the use of global name spaces and central trust authorities. 
The model enables fine-grained trust specification and flexible certificate management. 

6.  Implemented the NodeOS security API, and integrated it into our SAINTS platform that 
uses active capabilities and security guardian for active security. 

7.  Extended the NodeOS security API to support Quality of Protection (QoP) in active 
networks.  The active applications can dynamically change the security and protection 
characteristics while traveling from hop to hop.  Some examples of security and protection 
characteristics are different security algorithms, key sizes, and supports of security services.  

8.  Provided more input for the Security Architecture for Active Networks document 

Implemented the IRBAC model in Seraphim architecture.  With IRBAC, more than one 
autonomous domain can seamlessly interact with each with adequate security support. 
 
July 2000 - June 2001: 
 
1.  Developed the BARMAN (Bandwidth Authorization and Resource Management in 
Active Network) protocol for the NodeOS.  This protocol prevents denial of service attacks 
that “flood” networks with unwanted packets and block legitimate network traffic. 

2.  Deposited Master’s thesis titled “A Componentized Framework for Dynamic Security 
Policies”.  

3.  Participated in December 2000 AN PI Meeting with Team 4 integrated demo.  Seraphim 
package was integrated with CANES platform and provided dynamic security support.  In 
addition, BARMAN protocol was implemented inside the CANES Bowman NodeOS to 
provide safety against flooding DDOS attacks. 

4.  Developed the Reactive Role Based Access Control model (R2BAC). R2BAC is a way 
to use the IRBAC model as a defense mechanism against intrusions.  We used R2BAC to 
efficiently change the role hierarchy inside a security domain to counter the possible 
security threats.  We used INFOCON (Information Operation Condition) notion from DoD 
to model the current threats to the networks and used R2BAC to dynamically reconfigure 
the networks for tighter defense. 

5.  Developed a fuzzy logic based risk model.  In this model, every threat is represented as 
a fuzzy set.  The risk analyzer calculates the network-wide overall risk based on the fuzzy 
logic operation. 

6.  Participated in June 2001 AN PI meeting with a demonstration of R2BAC model and the 
fuzzy logic based risk assessment system.  In this system, every threat to the network is 
characterized as a fuzzy set and the current risk to the whole network is calculated with 
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fuzzy logic.  We also adopted the notion of DoD’s INFOCON (Information Operation 
Condition) to show how our risk assessment system and R2BAC model can be used as an 
efficient defensive mechanism. 
 
July 2001 – May 2002: 
 
1.  Deposited Ph. D Thesis on “Securing the Node of an Active Network.  This thesis 
explores the security issues and develops a security architecture for NodeOS security by 
implementing security as standardized services adapted to the Active Network architecture. 
The thesis includes a validation of the design using secure flow analysis based on a type 
system to validate the noninterference properties of the composition of these security 
services.   

2.  Developed a formal model of dynamic policies and introduced the notion of property 
preserving policies.  We also used formal validation and verification techniques to make 
strong safety guarantees about our dynamic access control policy framework.   

3.  Developing a formal Model of the Distributed Denial of Service problem.  
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Securing the Node of an Active Network
�

Zhaoyu Liu, Roy H. Campbell, M. Dennis Mickunas
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801�

zhaoyu, roy, mickunas � @cs.uiuc.edu

Abstract

Active networks aim to provide a software framework that enables network ap-
plications to customize the processing of their communications. Security is of crit-
ical importance to the success of active networking. This paper discusses the de-
sign of securing the node of an active network using active networking principles.
The secure node architecture includes an Active Node Operating System Security
API, an Active Security Guardian, and Quality of Protection (QoP) provisions.
The architecture supports highly customized and situational policies created by
users and applications dynamically. It permits active nodes to satisfy the applica-
tion specific dynamic security and protection requirements. It aids the application
of the “need-to-know” security principle and associates quality of protection with
network software and application security. The secure node architecture can pro-
vide fundamental base for securing the active network infrastructure.

Keywords: active networks, security API, active capability, active security guardian,
quality of protection

1 Introduction

Active networks aim to provide a software framework that enables network applica-
tions to customize the processing of their communications. The current active network
research focuses on the support of flexible, dynamically changing, fine-grained qual-
ity of service. There is little research on dynamic, flexible, and application specific
security features that exploit active networking. Similar to traditional networks, ac-
tive networks rely heavily on the underlying operating system for network security.
Current active network operating systems do not have explicit security support and
applications can not flexibly request security and protection requirements. The inflex-
ibility of the systems makes security policy and service customization complex and
often leads to security holes.

In this paper we present the design of securing the node of an active network using
active networking principles. We term this approach active security. The secure node
architecture is integrated into the active node operating system and includes:�

This research is supported by DARPA F30602-98-1-0192
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� A node operating system security API
� An active security guardian
� Quality of protection (QoP) provisions

The secure node architecture supports highly customized and situational policies
created by users and applications dynamically and provides fundamental base for se-
curing the active network infrastructure.

The rest of the paper is organized as follows. Section 2 discusses the current secu-
rity research on active networks. Section 3 describes the architecture of a secure active
node in detail. It discusses the principles to design the node operating system security
API, and describes the design of active security guardian and the support of quality of
protection. Section 4 presents the current implementation and the future work of this
active security research and then the final section concludes the paper.

2 Related Work

This section surveys the current security research on active networks. It provides back-
ground and motivation for the secure node architecture presented in the next section.

2.1 Active Network Security

It is difficult and complicated to retrofit security into Internet infrastructure [22]. The
active network research community considers security as an important part of the ini-
tial design. The security working group [23] of the active networks research commu-
nity has been instrumental in publicizing and highlighting the importance of security
in active networks. The group emphasizes the importance of incorporating security
into the initial design stage of the active network architecture itself. The current se-
curity related research in this field can be classified into two general categories. The
first one deals with the more traditional notion of security, which includes authentica-
tion, access control, policies and enforcement. The security working group [23] has
launched some important exploratory research in this direction. The second category
is mostly about protection of nodes from mobile code originating in foreign domains
and protection of active packets or code from malicious hosts [32]. The PLANet effort
[1] raises some of the issues associated with these protections. In addition the effort
also provides a bootstrapping module that ensures that the system configures itself cor-
rectly at startup or reboot time. The protection from mobile code is provided by using a
type-safe, resource limited, functional programming language with dynamic type ver-
ification. Mobile code can install protocols at nodes securely by using the extensibility
features provided by the language. Naccio of MIT [10] also belongs to this category.
The high-level application specified policies limit Java mobile code capability and thus
provide the necessary protection to mobile code execution host.

2.2 Active Node Operating Systems

The high-level architecture for active node is shown in Figure 1 [5]. A node oper-
ating system (NodeOS) manages the resources such as memory regions, CPU cycles
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and link bandwidth, and multiplexes packets among multiple execution environments
(EEs) running on the node. In order to support the porting EEs to multiple underlying
NodeOSes, a NodeOS interface is specified by the NodeOS working group [28].

Management
EE

Application Application Application

Other
Resources

EE

NodeOS

IPv6 EE 1 EE 2

Channels
Store

Flow

Figure 1: Active Network Node Architecture

The objectives of current NodeOS interface are to support fast network packets
forwarding and fine-grained quality of service. The interface doesn’t explicitly spec-
ify any security API. It defines the following five primary abstractions of system re-
sources:

� Thread Pool: computation resource.

� Memory Pool: memory resource

� Channel: communication resource, including not only network bandwidth, but
also CPU cycles and memory space.

� File System: persistent storage resource.

� Flow: Generally speaking, a flow is a sequence of packets satisfying some pre-
defined attributes of interests. Typically flows are related to routing [27] and
quality of service [37], where groups of packets would receive similar treatment
in their network transport. Traditionally the flow concept can be used in both
datagram and connection-oriented communications. In active networks, the flow
concept is used to aggregate control and scheduling of the above four abstrac-
tions. It provides abstraction for accounting, admission control and scheduling
in the system. A flow can contain sub-flows and this results a hierarchical flow
structure.

Currently there are several NodeOS implementations in active networks research
community. They all comply to the general NodeOS interface specifications in various
degree:

� Joust: Joust [11] is a small, fast JavaOS implemented in Scout [21]. It includes
an efficient Java virtual machine and a Java JIT compiler. It explores how Java’s
various features interact with Scout’s modular approach to building systems.
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The current NodeOS interface for active network nodes is mostly based on the
experiences with Joust.

� Janos: Janos is a Java-oriented active network operating system [4]. Its objec-
tive is to develop a principled local operating system for active network nodes,
which is oriented to executing untrusted Java byte code. The primary security
focus is resource management and control, with secondary objective of other
information security, performance, and technology transfer of broadly and sepa-
rately useful software components. Janos interface provides a sample Java bind-
ing of the NodeOS API abstractions.

� AMP System: AMP’s NodeOS is based on Exokernel operating system [12],
and uses Exokernel’s hierarchically-named capabilities [19] to support flexible
access control. Each Exokernel environment (similar to a Unix process) holds a
number of hierarchically-named capabilities, known as CAPs. The kernel main-
tains an array of CAPs and the environment specifies which CAP to use for each
system call or IPC operation.

� Bowman: The Bowman node operating system is built to support the CANEs
EE. It is designed around three key abstractions: channel, a-flow, and state-store
[20]. A channel is the primary abstraction for communication and an a-flow
is the primary abstraction for computation. The state-store provides a mecha-
nism for a-flows to store and retrieve state that is indexed by a unique key. The
Bowman NodeOS interface can be extended to provide support for additional
abstractions such as queues, routing tables, user protocols and services.

In summary, the current active node operating systems research focuses on high
performance, extensibility, and resource management. There is little research on ex-
plicit security support for authentication, authorization, integrity, and dynamic access
control. The secure node architecture presented in the next section addresses the above
security problems in active networks. It is complementary to the current NodeOS re-
search and augments its functionality. It can be seamlessly integrated into the current
NodeOS implementations to provide dynamic security services and access control.

3 Securing the Node

The architecture of the secure node of an active network is shown in Figure 2. The se-
cure node architecture includes a NodeOS Security API, an Active Security Guardian,
and Quality of Protection (QoP) provisions. The API provides support of authenti-
cation, authorization, integrity and access control services to EEs and active applica-
tions. It is implemented by a security library. An Active capability (AC) [18, 8, 7] is
used to support flexible distributed dynamic security policies. Essentially an AC is an
executable Java code which concisely represents dynamic security policies and mech-
anisms. The security guardian evaluates ACs in a secure sandbox environment and
enforces the security requirements of AC evaluation results. It obtains ACs securely
through the AC communication protocol. By using the NodeOS security API, active
security guardian, and active capabilities, it is feasible to provide quality of protection
to active applications.
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The rest of the section is organized as follows. We first briefly describe the active
capability, Role Based Access Control policy type and active security guardian con-
cepts. These concepts are developed and used in the Cherubim and Seraphim projects
[7, 18, 6]. Then we present the NodeOS security API and quality of protection provi-
sions in detail. Finally we discuss the low-level code safety and the EE security.

EE

AC
Communication

Protocol

NodeOS
Security API

Resources
NodeOS
Other

Library
Security

Engine

AC
Evaluation

Engine
Enforcement

AC

Security Guardian

Figure 2: Secure Node Structure

3.1 Active Capability

Active capabilities are used to support flexible distributed dynamic security policies
and services control, based on the similar active principles employed by active net-
works [18, 7]. Unlike a traditional capability, which is merely a static authorization
credential that encodes the principal and the permissions associated with the principal,
an active capability is a customized piece of code that encodes the type of access con-
trol policy and other constraints used in the access control decision making process. In
our implementation, an AC is an executable Java code which concisely represents dy-
namic security policies and mechanisms. In addition, an active capability is protected
by digital signatures, resides in user space and can be freely passed around.

By using an active capability various situational policies that depend on system
attributes can be encoded. For instance, by writing a piece of code that checks the
current system time and compares it with a value stored in the active capability one
can introduce a policy that expires after a certain time deadline. Similarly, various
enforcement and revocation schemes based on other attributes like quota, history, and
information content can be implemented. These schemes are very useful in an open
internetworking environment with diverse application requirements. An application
can use quota-based revocation to limit the amount of system resources a client can
consume.

An active capability could carry all policy information of decision in its code. This
heavy way of implementation is not elegant and efficient. A better way is to have a

59



generic policy framework to support different various policy types and ACs rely on
it for context. An application presents an active capability along with its regular data
or protocol capsules to the active router’s security guardian at execution time. The
access control policy type and user credentials are extracted from the capability. The
remote router’s security guardian recreates the context of the policy type within its
policy framework. If at any point during this process, the policy framework discovers
that it does not have an implementation for the type of the policy, it downloads the
code dynamically into the framework, using the underlying active network. It then
instantiates the run-time parameters associated with the application in its sandbox-like
environment and executes the active capability in this environment. Based on the result
of the evaluation of this active capability, the access control decision is enforced.

The principal of the active capability, which can be a user, a role, or other principal,
must be authenticated by a trusted authority. The trusted authority acts as the policy
server in our system. This entity is responsible for generating and keeping track of
the active capabilities. Usually one or more policy servers are associated with each
protection domain. Application programs contact their nearest or least-loaded server
and obtain the active capability dynamically.

3.2 Role Based Access Control (RBAC) Policy

The policy type used for dynamic access control in the architecture is Role Based
Access Control (RBAC) policy type, which is the most flexible type of access control
policy [33]. A Role Based Access Control policy, as the name suggests, uses the
concept of a role as its basis for representing permissions [33]. It is a form of access
control that emerges in the context of security policies for organizations. A role is
chiefly a semantic construct that forms the basis for an access control policy. With
RBAC, system administrators create roles according to the job functions performed in
an organization, grant permissions to those roles, and then assign users to the roles
on the basis of their specific job responsibilities and qualifications. The idea is that
the particular combination of users and permissions brought together by a role tends to
change over time while the permissions associated with a role are themselves relatively
more stable.

The biggest advantage that RBAC has over other forms of access control is that it
is extremely intuitive to use and maps easily to real-world situations. A hierarchy of
roles with senior roles inheriting all the permissions of junior roles closely follows the
structure of organizations. The access control policy in RBAC is embodied in compo-
nents such as role-permission, user-role and role-role relationships. These components
collectively determine whether a particular user is allowed access to a particular op-
eration on a particular component. These individual components can be easily (and
intuitively) configured to provide the required degree of access control. For exam-
ple, adding a new user to a system would merely involve assigning appropriate roles
to the user according to the user’s functions in the organization. Likewise, changing
the nature of, for example, printer access, for all managers in an organization can be
accomplished by merely changing the permissions with the manager role in the orga-
nization. All managers can immediately see the effects of the change.

RBAC is the most flexible type of access control policy. All RBAC subjects are
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assigned roles. Each role represents a particular set of objects and the allowed op-
erations on each object. The major benefits of this aggregation are the considerable
saving in terms of space and simplification in terms of management and enforcement.
RBAC allows users to create policies with more sophisticated specifications than sim-
ple DAC, DDAC or MAC. A single user may have many different roles, and different
permissions depending on the current role. Different constraints related to role and
privilege may be enforced in RBAC. The RBAC constraints supported in our sys-
tem include three important ones: mutually exclusive roles/permissions, prerequisite
roles/permissions and cardinality constraints.

3.3 Active Security Guardian

The security guardian in the architecture is to support AC evaluation and enforcement.
All accesses to node resources must go through security guardian which use the secu-
rity library services to verify the signature on the active capability.

The security guardian’s functionality is similar to traditional reference monitor,
with several major differences. In traditional systems, a reference monitor is interposed
between the subjects and objects to control subjects’ access to objects based on access
authorizations (Figure 3). The traditional reference monitor is passive in the sense that
it never initiates actions but only reacts when it receives an operation message. Access
through the reference monitor is either granted or denied corresponding to a yes or
no access evaluation result. The power and functionality of the traditional passive
reference monitor are limited [2].

Authorization Database

Audit Trail

Subject ObjectReference Monitor

Figure 3: Reference Monitor Concept

With the use of ACs, the security guardian is no longer passive. To make it active,
first we need to extend ACs. In addition to access control decision information, ACs
may carry other security information. For example, an AC may specify a particular
encryption key length for a particular region or country together with access control
information. To carry out the the intended security operations specified by ACs, an
evaluation engine and an enforcement engine are included in the security guardian.
The evaluation engine evaluates ACs in a secure sandbox. The enforcement engine
interacts with other NodeOS components to enforce faithfully the security operations,
using the security library services. The enforcement engine can initiate security actions
based on ACs requirements. So the security guardian may trigger or initiate security
actions. The triggers can be intrusion detection alarms, or explicit requests by EEs or
applications that use active networking features. For example, the security guardian
can initiate installing firewalls dynamically.
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3.4 NodeOS Security API

As mentioned above, the current NodeOS API [28] focuses on fast network packet-
forwarding and fine-grained quality of service. It provides mainly an interface for re-
source management without explicit security support. As a complement, the NodeOS
security API is designed to provide explicit security support to EEs and active applica-
tions. It exports security services including authentication, authorization and integrity
to EEs and active applications. The security API is defined as generically as possible
to accommodate a wide variety of implementations.

A standard, generic security API promotes easy, widespread development and use
of secure applications utilizing security. It allows combinations of cryptographic secu-
rity that support a range of protection levels. The API and different protection levels
support the needs of secure international software applications utilizing cryptography,
factoring law enforcement and national security interests. They enable flexible, low-
cost methods for cryptographically protecting sensitive information.

An API should satisfy the needs of both simple and sophisticated applications and
should be easy to use. It should require applications to have a minimal degree of
cryptographic awareness. According to NSA [34], there are several considerations for
security API design:

� Algorithm Independence

� Application Independence

� Cryptomodule Independence

� Degree of Security Awareness

� Modular Design and Auxiliary Services

� Safe programming

� Security Perimeter

We advocate a NodeOS security API that is generic and compatible with available
security API standards. Currently several related high-level APIs are available in the
research community:

1. Generic Security Service API (GSS API): The GSS API is designed specifically
for network communication protocols and provides additional support for se-
curing network communications after authentication [15]. It provides protection
for communication using authentication, integrity, and/or confidentiality secu-
rity services. Its extensions support access control and delegation [26].

2. Pluggable Authentication Module API (PAM API): This supports pluggable au-
thentication in stand-alone, non-connection-oriented environments for users and
provides system level authentication service [31]. It also provides a uniform
interface for authentication that is compatible with many authentication provi-
sions, and thus provides complementary functionality to the GSS API. The Java
Authentication and Authorization System API (JAAS API) bases its authentica-
tion on the PAM API in the Java language environment [14].
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3. Generic Authorization and Access Control Application Program Interface (GAA
API): The GAA API supports authorization decisions for applications in a dis-
tributed environment [30, 29]. An application invokes the GAA API functions
to determine if a requested operation or set of operations is authorized or if
additional checks are necessary. An application can also use the GAA API to
request access control information about a particular resource. The GAA API
can be used to obtain a principal’s access rights on an object or a resource and
supports the needs of most applications. Developers don’t need to design their
own authorization mechanisms.

The NodeOS API combines the above APIs to support authentication, authoriza-
tion, integrity, and access control. A security library implements the NodeOS security
API. The API is based on the active network flow concept and supports end-to-end
security, hop-to-hop security, and the active network protocols including routing pro-
tocols.

EE

Security ServicesAuthentication Authorization

GSS API

SESAME,
Etc.

Active Capability,
PolicyMaker,

ACL,
Etc.

Guardian
Security

X.509,
Password-based,

Kerberos,
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Etc.

JCE,
Kerberos

Dynamic Policy
Framework

NodeOS

Public Key API

X.509 PKI

PKIX
RFC 2510

GAA APIPAM API

Figure 4: NodeOS API Design

The NodeOS security API has three major components as shown in Figure 4, the
authentication API, the authorization API, and the security services API:

� The authentication API authenticates EEs, AAs, or users. It is based on the PAM
API. As shown in Figure 4, a possible implementation of the authentication API
uses the X.509 public key infrastructure (PKIX). RFC 2510, the Internet X.509
Public Key Infrastructure Certificate Management Protocol, provides a detailed
description of the security functions supported by PKIX.

63



� The authorization API helps protect NodeOS resources. It is based on the GAA
API. The security guardian in the Figure 4 supports access-control policy eval-
uation and enforcement. The security guardian’s functionality is similar to a
traditional reference monitor or to the role of the checking software that is in-
voked when a user process requests a supervisor privilege in a traditional operat-
ing system like UNIX. All accesses to node resources must go through security
guardian. One possible implementation of an access control mechanism is the
active capability described previously.

� The security services API provides security services such as encryption and dig-
ital signatures. The security services API is based on the GSS API.

Our focus is to export core and essential security functionality to the EEs and ac-
tive applications while securing the active network infrastructure. Thus, the EEs, the
active applications, and the NodeOS itself can use this API for security services, for
example, to support hop-hop authentication and security. The implementation of the
API must be secure if key management and principal identification are to be secure and
thus we locate the implementation of the API within the NodeOS and below the se-
curity guardian to take advantage of any hardware protection available to the NodeOS
implementation.

The NodeOS Security API we have described is comprehensive but not exhaus-
tive. It can be extended easily for future security enhancements. For example, it can
be extended to include the IDUP-GSS-API later, if necessary. The IDUP-GSS-API,
Independent Data Unit Protection Generic Security Service API, is similar to GSS
API, but is designed for independent data unit protection [3]. It extends the GSS API
for applications requiring protection of a generic data unit (such as a file or message).
The protection of one data unit is independent of the protection of any other data unit
and independent of any concurrent contact with designated receivers of the data unit.

3.5 Quality of Protection

By using the NodeOS security API, active security guardian, and active networking
features, it is feasible to provide quality of protection to active applications. Similar
to QoS, QoP supports customized, flexible security and protection requirements of
applications. For example, applications can specify routing paths based on security
and protection requirements.

To provide quality of protection, the NodeOS API needs to be enhanced with dif-
ferent security and protection options. These options are supported by the underlying
security library implementation in the NodeOS. In addition the security and protection
features need to be characterized. Some sample QoP characteristics include:

� Key length of security algorithms

� Robustness or strength of security algorithms

� Security mechanisms for authentication and privacy

� Trust values for developers/vendors of security implementations: One may trust
more the implementation of security algorithms by reputable vendors.
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� Assurance level of a router NodeOS: The orange book defines the assurance
class for an operating system as D, C1, C2, B1, B2, B3 or A1 [9]. A router
NodeOS with higher assurance class is more trustworthy.

� Geographical location of routers: One country may not trust the protection pro-
vided by the routers in enemy countries.

Active capabilities are used to specify, control and manage QoP. A trust party cre-
ates ACs upon the requests of applications.

With a NodeOS Security API, an Active Security Guardian, and Quality of Pro-
tection (QoP) provisions, the secure node can provide active security features to ap-
plications. Applications of active security include a security-customized routing path
specified by an application and stronger protection under intrusion. For quality of ser-
vice applications, both time constraints and security features are important [24]. The
QoP allows dynamic reconfiguration and tradeoffs between security protection and
satisfaction of the QoS constraints. The protection may be provided on per-service,
per-flow, or per-capsule base to optimize performance overhead.

3.6 Low-level Code Safety

The evaluation engine of security guardian relies on Java language for low-level code
safety. The minimum requirements for low-level code safety are control flow safety,
memory safety, and stack safety [13]. Currently we use the Java byte code verifier
[36] provided by Java language for low-level code safety. Before loading a class, the
verifier performs data-flow analysis on the class code to verify that it is type safe and
that all control-flow instructions jump to valid locations [17].

There are several other approaches for low-level code safety. The PLAN project [1]
uses programming language techniques to address the code safety problem. Capsules
are written using a strongly typed, resource limited language and dynamic code ex-
tensions are secured by using type safety and other mechanisms. Another approach is
Proof-Carrying Code (PCC) [25]. Besides regular program code, PCC carries a proof
that the program satisfies certain properties. The proof is verified before the execution
of the code. The generation of a proof may be complex and time consuming, while its
verification should be simple and efficient. Software fault isolation (SFI) [35] provides
another alternative for low-level code safety. It uses special code transformations and
bit masks to ensure that memory operations and jumps access only the correct memory
ranges.

In summary, there are a variety of different mechanisms and protocols proposed.
Each method has its own advantages and disadvantages. Ultimately the application
must be given the choice to pick the mechanism that is most suitable for its purpose.
The secure node architecture is generic enough to allow all these mechanisms to co-
exist.

3.7 Discussion

An execution environment can also implement security requirements within itself [23].
It can set up security policies for active applications running inside it. While this paper
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does not focus on the EE security, the same design principles discussed in this paper
can be applied to the EE security.

4 Current Status and Future Work

We have a prototype implementation of secure node architecture, with a simplified ver-
sion of security guardian. The security guardian is used in the Seraphim architecture
framework [18, 6]. The security guardian of NodeOS can obtain ACs from a trusted
policy server and evaluate them. The evaluation result of a AC is either a yes or no.
The AC is used to control the access to the NodeOS resources, such as channels. Two
innovative applications [18, 16] are implemented to show the benefits of the proposed
research. They add little performance overhead to the network.

We are currently extending the prototype to a full implementation of the secure
node architecture. We plan to demonstrate the power of active security by various
applications. The applications include secure routing protocols, security-customized
routing paths specified by an application and strengthened protection under intrusion.
We also plan to investigate the dynamic reconfiguration and tradeoffs between security
protection and satisfaction of the QoS constraints.

5 Conclusions

This paper describes the design of securing the node of an active network. It shows
that such a secure node architecture, based on active network principles, can provide
fundamental base for securing the active network infrastructure and supporting appli-
cation specific dynamic security requirements and policies. The research in this paper
complements the current active network research and augments its functionality. The
secure node architecture provides authentication, authorization, integrity, dynamic ac-
cess control, and quality of protection for active applications.

The flexibility and expressibility afforded by the secure node enables us to imple-
ment a multitude of diverse, innovative and exciting applications. These applications
exploit the active networking paradigm without compromising the security of the in-
frastructure. In addition, our architecture lays the ground rules for seamless integration
with parallel and ongoing efforts in the active networks community. The same design
principles can be applied to the security support for the execution environment of an
active node.
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ABSTRACT 
 

Security is of critical importance to the success of 
active networking. In addition, we argue that active 
security based on active networking principles can offer a 
wide range of opportunities to build better security 
systems. This paper describes the integration of active 
security into a software system implementing the active 
network architecture. The paper demonstrates that an 
extensible, reconfigurable security architecture based on 
active networking is flexible and accommodates a wide 
variety of security policies and mechanisms. The active 
security provides users the ability to dynamically create 
and enforce highly customized and situational policies for 
their applications. The active security also permits 
security systems to react to intrusion and can aid the 
application of the "need-to-know" security principle to 
network software and application security.  
 
Keywords: active networks, security, reconfigurable, 
active capability, interoperability  
 
1 INTRODUCTION 

 
An active network   provides a software framework 

that enables network applications to customize the 
processing of their data [1, 2]. Active applications inject 
capsules that contain programs (along with data) into the 
network. Active routers dynamically install these 
programs and execute them on the data. Though this 
facilitates fast protocol and service deployment it also 
makes the routers vulnerable to attacks from arbitrary 
user-code.  Securing the routing infrastructure against 
threats and exposures remains a major challenge in this 
paradigm [3]. 
 

Traditional networks rely on the underlying 
operating system to implement security mechanisms and 
policies. The traditional definition of security in a 
network environment includes authentication, access 
control, and encryption. Applications and routers establish 
a basis for trust by mutual authentication. To protect the 
integrity of the contents of the capsules, encryption and 
digital signatures can be employed. Access control 
mechanisms or policies are defined and enforced to 

provide controlled access to the router resources.  In 
addition, active network routers have to provide support 
to 

• prevent malicious behavior of arbitrary user code 
and  

• protect the user code and data from malicious 
routers 

  
Though a wide range of policy types [4] and 

mechanisms [5] have been proposed, underlying 
operating systems implement only a static subset of these 
policies and mechanisms. Applications that want to use 
sophisticated or customized policies have to make do with 
lesser or weaker security guarantees. The overhead 
associated with adding new policies and mechanisms can 
also be prohibitive. 
 

In order to exploit the active network flexibility, we 
have developed a dynamic, fully extensible, interoperable 
security architecture based on and built into the 
underlying active network architecture [6]. We term this 
approach active security [7]. The security architecture 
enables both static and runtime application-aware 
reconfiguration [8]. Adaptation allows the security 
provisions of the network to meet specific individual 
security requirements within different application 
scenarios. Applications can request specific security 
policy instantiations on specific parts of the network, 
distributing the relevant security policies on a "need-to-
know" basis. Alternatively, changes in the security 
policies for the network can be triggered by the 
invalidation of a trust model, perhaps by the detection of 
intrusion or other abnormal behavior.   
 

In this paper we describe the integration of active 
security into a software system (Bowman and CANEs 
[13, 14]) implementing the active network architecture 
[12] to showcase the above claimed advantages. Our 
active security system is composable and can be easily 
plugged into current active network systems. The 
integration demonstrates that the active security can 
provide users the ability to dynamically create and 
enforce highly customized and situational policies for 
their applications.  It also shows that the active security 
can permit security systems to react to intrusion and can 
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aid the application of the "need-to-know" security 
principle to network software and application security. 

 
The rest of the paper is organized as follows. 

Section 2 overviews our Seraphim active security 
architecture. Section 3 describes the integration of our 
architecture into a software system implementing the 
active network architecture. Section 4 presents an 
application example to show the flexibility of the active 
security based on the current implementation. Section 5 
shows the preliminary performance measurement. Section 
6 describes the future plan of the integration. The last 
section concludes this paper. 

 
2 SERAPHIM: ACTIVE SECURITY 
ARCHITECTURE 
 

Seraphim is a dynamic, flexible, and application 
specific security architecture that exploits the active, 
dynamic functionality provided by active networking 
using an active capability (AC) [6, 9].  Essentially an AC 
is an executable Java code, which concisely represents 
dynamic security policies and mechanisms. ACs are 
evaluated by a security guardian in a secure sandbox 
environment and the security guardian enforces the 
security requirements of AC evaluation results. We 
describe the architecture in more detail next. 
 
2.1 ACTIVE CAPABILITY 
 

Active capabilities are used to support flexible 
distributed dynamic security policies and services control 
employing the same active principles as active networks 
[6, 9]. Unlike a traditional capability, which is merely a 
static authorization credential that encodes the principal 
and the permissions associated with the principal, an 
active capability is a customized piece of code that 
encodes the type of access control policy and other 
constraints used in the access control decision making 
process. In our implementation, an AC is an executable 
Java code that concisely represents dynamic security 
policies and mechanisms. In addition, an active capability 
is protected by digital signatures, resides in user space and 
can be freely passed around. 
 

An active capability can carry all the decisions 
policy information in its code. This way of 
implementation is not modular, elegant and efficient. A 
better way is to have a generic policy framework that 
supports different various policy types. ACs use the 
framework to implement specific policies. An application 
presents an active capability along with its regular data or 
protocol capsules to the active router’s security guardian 
at execution time. The access control policy type and user 
credentials are extracted from the capability. The remote 
router’s security guardian recreates the context of the 
policy type within its policy framework. If at any point 
during this process the policy framework discovers that it 
does not have an implementation for the type of the 

policy, it downloads the code dynamically into the 
framework, using the underlying active network. It then 
instantiates the run-time parameters associated with the 
application in its sandbox-like environment and executes 
the active capability in this environment. Based on the 
result of the evaluation of this active capability, the access 
control decision is enforced. 
 

The principal of the active capability, which can be 
a user, a role, or other principal, must be authenticated by 
a trusted authority. The trusted authority acts as the policy 
server in our system.  The policy server is responsible for 
generating ACs, serving ACs to applications and keeping 
track of ACs. Usually one or more policy servers are 
associated with each protection domain. Application 
programs contact their nearest or least-loaded server and 
obtain the active capability dynamically. 
 
2.2 POLICY FRAMEWORK 
 

The policy framework is an object-oriented and 
coded in Java. This allows users and commercial 
organizations to specify policies tailored to their specific 
operational needs. The framework itself is a hierarchy of 
classes as shown in Figure 1.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The framework is dynamically configurable and 

extensible. The classes at the bottom of the framework are 
mostly abstract and are mainly used to represent 
mathematical concepts such as sets and mappings. These 
classes form the basis for a hierarchy of successively 
incremented specialized classes representing concepts 
such as labels and access control lists. Finally, at the top 
of the framework are classes that can be used to represent 
a variety of generic policy forms. 

 
The policy framework supports the following 

common types of access control: Mandatory (MAC), 

DAC

DDAC

MAC RBAC

OS Interfaces

Primitives

Figure 1: Component-level Map of the 
Policy Framework 
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Discretionary (DAC), Double Discretionary (DDAC), and 
Role-based (RBAC) [10]. More application specific 
access control policy systems can be easily extended from 
this object-oriented framework ([11] provides several 
good examples). In our model, we can specify not only 
the traditional <subject, object, operation> access control 
triple, but also include a resource limit on usage, 
situational decision rules, constraints and dependences, 
e.g., based on current time of the day or current role of the 
principal. The main policy type we use for active 
networks is RBAC because of its flexibility. We will 
describe its usage in more detail later. 
 
2.3 SECURITY GUARDIAN 
 

The security guardian in the architecture supports 
AC evaluation and enforcement.  The security guardian’s 
functionality is similar to a traditional reference monitor. 
All accesses to node resources must go through the 
security guardian. The security guardian uses the security 
library services to verify the signature on the active 
capability. To carry out the intended security operations 
specified by ACs, an evaluation engine and an 
enforcement engine are included in the security guardian. 
The evaluation engine evaluates ACs in a secure sandbox. 
The enforcement engine interacts with other NodeOS 
components to enforce faithfully the security operations, 
using the security library services. The enforcement 
engine can initiate security actions based on ACs 
requirements. So the security guardian may trigger or 
initiate security actions. The triggers can be intrusion 
detection alarms, or explicit requests by execution 
environments (EEs) or applications that use active 
networking features. For example, the security guardian 
can initiate installing firewalls dynamically [6]. 
 
 
3 INTEGRATION OF SECURITY INTO 
ACTIVE ARCHITECTURE 
 

This section describes the integration of the above 
security system into a software system implementing the 
active network architecture [12]. The software system has 
two parts: the Bowman NodeOS and the CANEs 
execution environment [13, 14]. We first briefly overview 
the Bowman and CANEs systems, and then present the 
integration. 
 
3.1 OVERVIEW OF BOWMAN AND CANES 
 

The Bowman node operating system is built to 
support the CANEs EE. It is designed around three key 
abstractions: channel, a-flow, and state-store.  A channel 
is the primary abstraction for communication and an a-
flow is the primary abstraction for computation. The 
state-store provides a mechanism for a-flows to store and 
retrieve state that is indexed by a unique key. The 
Bowman is layered on top of a host operating system that 

provides lower level services. To make the elementary 
Bowman channel, a-flow, and state-store abstractions 
more useful for users, Bowman provides an extension 
mechanism that is analogous to loadable modules in 
traditional operating systems. Using extensions, the 
Bowman NodeOS interface can be extended to provide 
support for additional abstractions such as queues, routing 
tables, user protocols and services ([15] provides a more 
complete NodeOS API). 

 
The CANEs EE is built on the top of the Bowman 

NodeOS.  It provides a composition framework for active 
services based on customizing a generic underlying 
program by injecting code to run in specific points called 
slots.  The composition model basically has two parts. 
The first part, the underlying program, is a fixed part for 
uniform processing applied to every packet. The second 
part, the injected program, is a dynamic part that provides 
user-specific functionality for routing and processing the 
packets. The injected program is dynamically executed at 
the appropriate specific points (slots) in the underlying 
program.  CANEs uses signaling messages to control the 
injected programs. 
 

 
3.2 INTEGRATION 
 

The integration of active security, CANEs and 
Bowman is shown in Figure 2. The security guardian is a 
thin layer between the Bowman NodeOS and the CANEs 
EE. The Bowman NodeOS interfaces are replaced by the 
security interfaces. The security guardian does the 
following security checkings [16]:  
 

• Authentication: It verifies the identification and 
the signature of the request messages. We use 
X.509 certificates [17] and a simple public key 
infrastructure (PKI) for authentication. 

User A−flow
CANEs EE

System Thread

CANEs Signalling A−flow

Bowman NodeOS

CANEs API

Host OS

Security Guardian (JNI, JVM)

Policy Server

Policy Administrator
GUI

U

I1
I2

Figure 2: Integration of Active Security into 
Bowman and CANEs 
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• Authorization: If authentication succeeds, it then 
checks the access permission for the requests. 
This requires fetching and evaluating ACs. 

 
Since Bowman and CANEs are written in C to 

obtain high performance and the Seraphim architecture is 
implemented in Java for interoperability and security 
purpose, we use JNI (Java Native Interface) in Bowman 
and CANEs to invoke the security guardian in Java.  
When Bowman starts, it starts the security guardian 
component that invokes Sun JVM. Each security check 
from CANEs to the Bowman NodeOS security interface 
is attached to the Sun JVM as a Java thread. After the 
checking, the Java thread is detached and destroyed. 
 

The security guardian obtains ACs through a secure 
channel from the policy server. The policy administrator 
uses a GUI that allows users or system administrators to 
create and define policy specific attributes and to generate 
active capabilities. The GUI allows the administrator to 
create role definitions and associate users and permissions 
with the role, and supports other functionality (see [10] 
for more details). 
 
4 APPLICATION EXAMPLE 
 

We have implemented a preliminary version of the 
authorization part of the integration. Based on the 
authorization part, we have developed an example 
application scenario, which is shown in Figure 3, 4, 5 and 
6. Figure 3 shows that on behalf of user root@null of role 
default_role, the CANEs EE can create an a-flow on the 
router A, but not on the router B. In order to have a 
complete flow path from the user root@null to the router 
B, we can dynamically create a new AC through the 
policy GUI and install it at the router B. Now the CANEs 
EE can create an a-flow on both router A and B on behalf 
of the user root@null of role default_role (Figure 4). The 
policy type of Figure 3 and 4 is RBAC. If we want to 
have a stricter and less flexible policy we can dynamically 
change RBAC to MAC (Figure 5). In this case, the trigger 
for the policy type change may be an intrusion detection 
alarm.  In MAC policy every entity is assigned a security 
level. A hierarchy is defined in terms of these levels. 
Subjects with lower levels cannot read from objects of 
higher levels and subjects with higher levels cannot write 
to objects of lower levels.  We assume that the MAC level 
L1 is higher than MAC level L2. This means that the 
router B has lower security level than the router A. So if 
user root@null is also at security level L1, then user 
root@null can create an a-flow at only the router A since 
user root@null cannot write to router B (Figure 6). 

AC

Router A

RBAC

AC

Router B

Flow

RBAC policy admin
installs new capability and
root can create flow now

default_role, root@null, router B, o_aflow_create_default

Figure 4: Second Demo Scenario 

Router A Router B

Admin AC: Revoke RBAC, Grant MAC

Change to MAC

MAC MAC

L2L1

Figure 5: Third Demo Scenario 

AC

Router A Router B

Flow

No capability found

default_role, root@null, router A, o_aflow_create_default

RBAC

Root can not create flow on Router B

Figure 3: First Demo Scenario 

Router A

Flow

MAC

MAC

Router B

MAC
L1 L2

user root@null could be compromised
(root@null, L1) can not write to (B, L2)

label L1, root@null, router A, o_aflow_create_default

Figure 6: Fourth Demo Scenario 
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5 PERFORMANCE 
 

The overhead that the integration introduces 
includes the JNI invocation overhead and the regular 
security overhead. The regular security overhead, which 
includes AC fetching and evaluation, is necessary for 
flexible access control and has been studied previously 
[6]. We used a simple active ping application 
(atraceroute) between two machines A and B to measure 
the JNI invocation overhead. Machine A is a Sun Ultra-5 
machine, and machine B is a Sun Ultra-2 machine. Both 
A and B are on the same 100Mbps Ethernet LAN. 
Machine A sends an atraceroute to machine B that is 
running the Bowman NodeOS. We measure the round trip 
time (RTT) of the atraceroute command with and without 
JNI invocation (When with JNI invocation, we let 
security guardian simply return a true value in order not 
to include the regular security overhead).  Without any 
optimization, the RTT is about 2400ms without JNI 
invocation and about 9100ms with JNI invocation. 
 

In order to improve the performance, we plan to 
have a leaner JVM replace the current Sun JVM. A 
possible choice is Kaffe JVM [18]. A more dramatic 
improvement would be to use a simpler language than 
Java for ACs. The sandbox evaluation engine of the 
security guardian of the simpler language must be 
efficient.  
 
6 FUTURE PLAN 
 

We plan to extend the current integration 
implementation to provide security checking for all 
CANEs signaling messages. We plan to add 
authentication and dynamic revocation to the integration, 
using the security NodeOS API [16]. We also plan to 
integrate the Denial of Service prevention features into 
the system. Finally we will install an experimental setup 
for the flexible, secure, and composable demanded video 
distribution application [19] to demonstrate the secure 
composable services for active networks. 

 
 
7 CONCLUSION 
 

This paper describes the integration of the Seraphim 
active security into a software system implementing the 
active network architecture [12]. The active security 
architecture is dynamic, fully extensible, interoperable 
and is based on the underlying active network principles. 
The integration demonstrates that the active security 
architecture can be easily plugged into the active network 
architecture such as Bowman and is flexible and 
accommodates a wide variety of security policies and 
mechanisms.  We show that active security can provide 
users the ability dynamically to create and enforce highly 
customized and situational policies for their applications.   

We also show that the active security can permit security 
systems to react to intrusion and can aid the application of 
the "need-to-know" security principle to network software 
and application security. We believe that exploiting active 
security is a step in the direction of designing a 
comprehensive and flexible framework to integrate 
various security mechanisms and services into the active 
network architecture. 
 
 
8 ACKNOWLEDGEMENTS 
 

We would like to thank Matt Sanders, Ken Calvert 
and Ellen Zegura to help us understand the Bowman 
NodeOS and CANEs execution environment system. 

This research is supported by DARPA F30602-98-
1-0192. 
 
REFERENCES 
 
[1] D. Wetherall, J. Guttag, and D. Tennenhouse. ANTS: 
A Toolkit for Building and Dynamically Deploying 
Network Protocols. In OPENARCH’98, 1998. 
 
[2] D. Wetherall, U. Legedza, and J. Guttag. Introducing 
New Internet Services: Why and How. In IEEE Network 
Magazine, July 1998. 
  
[3] S. Murphy, ed. Security Architecture Draft. AN 
Security Working Group. Draft. 
 
[4] Ravi Sandhu. Role-Based Access Control. In 
Advances in Computers, Vol. 46, Academic Press, 1998. 
Also at http://www.list.gmu.edu/articles.htm 
 
[5] The SwitchWare Project Homepage. 
http://www.cis.upenn.edu/~switchware/ 
 
[6] Zhaoyu Liu, Prasad Naldurg, Seung Yi, Tin Qian, Roy 
H. Campbell, and M. Dennis Mickunas. An Agent-based 
Architecture for Supporting Application Level Security. 
In the DARPA Information Survivability Conference and 
Exposition, Hilton Head Island, SC, January 2000. 
 
[7] Roy H. Campbell, Zhaoyu Liu, M. Dennis Mickunas, 
Prasad Naldurg, and Seung Yi. Seraphim: An Active 
Security Architecture for Active Networks. Tech. Report 
2137, Department of Computer Science, University of 
Illinois at Urbana-Champaign, November 1999. 
 
[8] Roy H. Campbell, Zhaoyu Liu, M. Dennis Mickunas, 
Prasad Naldurg, and Seung Yi. Seraphim: Dynamic 
Interoperable Security Architecture for Active Networks. 
In IEEE OPENARCH 2000, Tel-Aviv, Israel, March 
2000. 
 
[9] Roy H. Campbell, M. Dennis Mickunas, Tin Qian, and 
Zhaoyu Liu. An Agent-based Architecture for Supporting 
Application Aware Security. In the Workshop on 

73



Research Directions for the Next Generation Internet, 
Vienna, VA, May 1997. 
 
[10] Vijay Raghavan. On the Design and Implementation 
of a Security Policy Administration for a Dynamic 
Security System. Master’s Thesis, Department of 
Computer Science, University of Illinois at Urbana-
Champaign, May 1999. 
 
[11] Tim Fraser. An Object-Oriented Framework for 
Security Policy Representation. Master’s Thesis, 
Department of Computer Science, University of Illinois at 
Urbana-Champaign, December 1996. 
 
[12] K. Calvert, ed. Architectural Framework for Active 
Networks. AN Architecture Working Group. Draft. 
 
[13] S. Merugu, S. Bhattacharjee, Y. Chae, M. Sanders, 
K. Calvert, and E. Zegura. Bowman and CANEs: 
Implementation of an Active Network. In Proceedings of 
37th Annual Allerton Conference, Monticello, IL, 
September 1999. 
 
[14] The CANEs Project Homepage. 
http://www.cc.gatech.edu/projects/canes/ 
 
[15] L. Peterson, ed. NodeOS Interface Specifications. 
AN NodeOS Working Group. Draft. 
 
[16] Zhaoyu Liu, Roy H. Campbell, and M. Dennis 
Mickunas. Securing the Node of an Active Network. In 
Active Middleware Services, Salim Hariri, Craig Lee, and 
Cauligi Raghavendra (editors), Kluwer Academic 
Publishers, Boston, MA, September 2000. 
 
[17] C. Adams and S. Farrell. Internet X.509 Public Key 
Infrastructure Certificate Management Protocols. RFC 
2510, March 1999. 
 
[18] The Kaffe Homepage. http://www.kaffe.org/ 
 
[19] The PANAMA Project Homepage. 
http://www.tascnets.com/panama/ 
 
 

74



APPENDIX   H

75



76



77



78



79



80



81



82



83



84



85



86




